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Vision impairment and blindness

have a substantial impact on people's

ability to perform everyday tasks and

can affect their quality of life. In fact,

vision impairment reduces mobility,

affects mental wellbeing, exacerbates

the risk of dementia, increases the

likelihood of falls and road traf�c

crashes, increases the need for social

care, and ultimately leads to higher

mortality rates². 

Globally, at least 2.2 billion people have

a vision impairment or blindness, of

whom at least 1 billion have a vision

impairment that could have been

prevented or has yet to be addressed². 

Retinal degenerative diseases, like diabetic retinopathy,

glaucoma, and age-related macular degeneration

(AMD), are leading causes of vision loss and blindness

worldwide¹. 

The Burden of Retinal

Degenerative Diseases

Moreover, in the “World report on the

vision” from World Health Organization

(WHO), it was reported that 11.9 million

people globally have a moderate or

severe vision impairment or blindness

due to glaucoma, diabetic retinopathy,

and trachoma that could have been

prevented³. 

The estimated costs of preventing the

vision impairment in these 11.9 million

would have been US$5.8 billion³.

Despite the scarce economic estimates,

it was suggested that the annual global

productivity loss from vision

impairment is approximately US$410.7

billion purchasing power parity⁴. That

way the prevention of vision

impairment represents a signi�cant

opportunity to reduce the substantial

personal and societal burden

associated with vision impairment and

blindness.
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The pathophysiology of diabetic

retinopathy, glaucoma, and AMD is still

not completely understood, and novel

biomarkers for diagnosis and disease

progression are needed. Early diagnosis

and intervention on patients with retinal

degenerative disease would be key to

improve the outcomes of treatment.

Despite the increasing interest of the

scienti�c community in trying to

elucidate the mechanisms underlying

retinal dysfunction and degeneration,

that knowledge is yet to translate into

effective therapies for these retinal

degenerative diseases. That way, there is

a clear unmet clinical need for new and

more effective therapeutic strategies⁵.

Diabetic retinopathy is a signi�cant

complication of diabetes mellitus and a

leading cause of vision impairment and

blindness in working-age adults⁶.

Globally, 3.28 millions of people present

visual impairment and 1.07 million are

blind due to diabetic retinopathy ⁴ (4). A

major hallmark of the disease is the

blood-retinal barrier breakdown. The

current available 

Diabetic Retinopathy

Therapeutic strategies mainly target

neovascularization through the use of

anti-vascular endothelial growth factor

(VEGF) therapies, laser treatment, and

surgery⁷. Nevertheless, diabetic

retinopathy is now considered a neuro-

vascular disease in which a low-grade

chronic in�ammatory environment

contributes to blood-retinal barrier

breakdown and retinal neural

dysfunction⁸⋅⁹. In fact, the inducible nitric

oxide synthase isoform, which is highly

involved in in�ammation processes, is a

key mediator of blood-retinal barrier

breakdown triggered by diabetes¹⁰.

Glaucoma

Glaucoma is a leading cause of

irreversible blindness and is

characterized by optic nerve damage

and retinal ganglion cell death¹¹. It was

calculated that glaucoma led to visual

impairment and blindness of 4.13 and 3.61

million people in 2020, respectively⁴.

Elevated intraocular pressure (IOP) is an

important risk factor in glaucoma and the

only one that is modi�able¹².  Indeed,

current treatments are directed towards

IOP lowering. However, many patients

continue to lose vision despite successful
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AMD is a major cause of vision loss

worldwide and the leading cause of

blindness in the elderly²⁰. It is

responsible for visual impairment in

6.23 million people and blindness in 1.85

million people⁴.

Age-related macular

degeneration (AMD)

IOP control¹³. Therefore, new and more

effective treatments are an emergent

clinical need, and retinal neuroprotection

has been considered to be an additional

therapy¹⁴. Moreover, it has been described

that microglia-mediated

neuroin�ammation further contributes to

retinal neurodegeneration and the

underlying mechanisms have been

studied to devise novel neuroprotective

strategies for glaucoma¹⁵. That way a new

therapeutic approach to glaucoma should

be not only focused on IOP lowering but

also on protecting retinal ganglion cell

from glaucomatous damage¹⁶⋅¹⁷. The

control of microglia-mediated

neuroin�ammation was demonstrated to

confer neuroprotection to the retina¹⁸⋅¹⁹.

The dry form of AMD and geographic

atrophy are currently untreatable, while

VEGF inhibition therapy is the best

available treatment for wet AMD²². The

anti-VEGF therapies present a signi�cant

burden for the patients due to the need

for repeated intravitreal injections²³. That

way alternative treatment strategies have

been proposed in order to ease the

treatment burden by reducing the

number of injections needed ²⁴⋅²⁵.

In Vivo Models

The development of several animal

models of disease mimicking some

features present in retinal degenerative

diseases have been signi�cantly

contributing to unraveling 

AMD is classi�ed in two forms²¹: 

"Early/dry" form: characterized by the

accumulation of cellular debris in the

subretinal space, beneath the retinal pigment

epithelium (RPE), called drusens. The disease

can then progress to RPE and photoreceptor

loss;

▪

"Advanced dry/wet" form: characterized by the

presence of geographic atrophy (dry) due to

RPE and photoreceptor cell death and/or

choroidal neovascularization (wet), with new

blood vessels arising from the choroid

through the RPE layer into the outer retina,

leading to photoreceptor dysfunction and

degeneration 

▪
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important aspects in the understanding

of the pathogenesis of the retinal

disease. The development of in vivo

models also allows testing new and more

ef�cacious possible therapeutic strategies

for retinal degenerative diseases²⁶.

In diabetic retinopathy research, there are

several animal models that rely on the

induction of both type I diabetes and type

2 diabetes. One of the commonly used

animal models of diabetic retinopathy is

the streptozotocin (STZ)-induced type 1

diabetes. This model has been used to

give insight into the action mechanisms 

of new and already used treatments in

the clinics ²⁷⋅²⁸. Goto-Kakizaki (GK)

animals are a type 2 diabetes animal

model characterized by early and

relatively stable mild hyperglycemia,

hyperinsulinemia, and insulin resistance

²⁹. This model mimics some features

present in diabetic retinopathy as

increased nitric oxide production, early

inner blood-retinal barrier breakdown and

migration of activated microglial cells

from the retina to the choroid ³⁰⋅³¹.

Regarding glaucoma, since elevated IOP

is the main risk factor, relevant animal 

FIGURE 1:

Global estimates of number of people affected by retinal degenerative diseases, namely diabetic

retinopathy, glaucoma and age-related macular degeneration, that cause vision impairment and

blindness.
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models for glaucoma have been

developed around the challenge of

producing experimental IOP elevation.

However, other non-related IOP animal

models have been developed³².

Glaucoma animal models lead to retinal

ganglion cells (RGCs) dysfunction and

loss, and optic nerve axonal transport

impairment, mimicking some features of

the disease. Ocular hypertension (OHT)

model, based on laser photocoagulation

of the trabecular meshwork and

perilimbal and episcleral veins³³, episcleral

vein cauterization model³⁴, and

microbeads injection in the anterior

chamber³⁵ are animal models based on

the blockage of aqueous humor drainage,

increasing IOP, and ultimately leading to

RGC loss and damage of the optic nerve.

Moreover, pressure-independent animal

models, like optic nerve crush, optic nerve

transection, and retinal ischemia-

reperfusion (I-R) injury³², have been used

to model normal-tension glaucoma, and

they have provided insights into the

neurodegenerative mechanisms of RGC

loss.

The animal models that mimic some

features of AMD are focused on both

forms of the disease, “dry” and “wet”.

Complement factor pathway genetic 

Monitoring of Retinal

Degenerative Diseases

models (e.g. Ccl2-/- and Ccr2 mice)³⁶ and

light-induced retinal degeneration

model³⁷ have being used to study the

advanced dry geographic form of AMD,

inducing photoreceptor death, subretinal

drusen-like accumulations, thickening of

Bruch's membrane and immune

activation. The laser-induced choroidal

neovascularization animal model is the

most used model for “wet” AMD, which

induces Bruch’s membrane rupture,

inducing the growth of new choroidal

vessels into the subretinal area³⁸.

Accurate monitoring of retinal

degenerative diseases in

patients is vital to preserve

their visual function.

Likewise, disease progression can be

assessed using similar but adapted

methods in animal models.
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The leakage of the blood-retinal barrier

can be assessed in vivo by �uorescein

angiography, which is widely used to

assess alterations in the retinal vasculature

in diabetic retinopathy and age-related

macular degeneration patients³⁹.

▪

Retinal function and structure can be

easily assessed in vivo in animal models of

disease by electroretinography (ERG) and 

optical coherence tomography (OCT),

respectively. Signi�cant progress have

been achieved in retinal imaging

techniques that have enabled clinicians to

detect structural changes in patients⁴⁰.

OCT is a non-invasive procedure used to

visualize the anterior and posterior

segments of the eye at high resolution

that likewise is used in animals⁴¹·⁴². 

▪

Assessment of visual function, used in the

clinic has also been adapted and can be

performed in animal models using 

quantitative optomotor response ⁴³.

▪

FIGURE 2:

Disease progression in animal models of disease can be performed by optical coherence

tomography (OCT, to assess retinal structure), electroretinography (ERG, to assess retinal

function),  and quantitative optomotor response (OMR, to assess visual function) and

�uorescein angiography (to assess leakage of the blood-retinal barrier). 

Monitoring of Retinal

Degenerative Diseases
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The retina as a Window

to the Brain

The concept of "the retina as a window to

the brain" arose several years ago since

eye examination, and namely the retina,

with non-invasive approaches has been

considered an additional tool for the early

diagnosis of neurodegenerative

diseases⁴⁴, such as Alzheimer's

disease⁴⁵⋅⁴⁶ and Parkinson's disease⁴⁷. In

fact, several studies in Alzheimer's disease

animal models⁴⁸ and patients⁴⁹⋅⁵⁰

demonstrated a thinning of the retina

assessed by OCT. These studies suggest

that the assessment of retinal thickness

by OCT may be useful for an early

diagnosis of Alzheimer's disease. Similar

�ndings have been reported in

Parkinson's disease patients⁵¹·⁵².
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